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Abstract

This paper presents an overview of NASA Lang-
ley’s research program in formal methods. The ma-
jor goals of this work are to make formal methods
practical for use on life critical systems, and to or-
chestrate the transfer of this technology to U.S. in-
dustry through use of carefully designed demonstra-
tion projects. Several direct technology transfer ef-
forts have been initiated that apply formal methods
to critical subsystems of real aerospace computer sys-
tems. The research team consists of five NASA civil
servants and contractors from Odyssey Research As-
sociates, SRI International, and VIGYAN Inc.

1 Rationale For Formal Methods Re-
search Program

NASA Langley Research Center has been develop-
ing techniques for the design and validation of flight
critical systems for over two decades. Although much
progress has been made in developing methods to ac-
commodate physical failures, design flaws remain a se-
rious problem [1, 2, 3, 4,5, 6, 7]. A 1991 report by
the National Center For Advanced Technologies! iden-

1A technical council funded by the Aerospace Industries
Association of America (AIA) that represents the major U.S.
aerospace companies engaged in the research, development and
manufacture of aircraft, missiles and space systems, and related
propulsion, guidance, control and other equipment.

tified “Provably Correct System Specification” and
“Verification Formalism For Error-Free Specification”
as key areas of research for future avionics software
and ultrareliable electronics systems [8].

1.1 Why Formal Methods Are Necessary

Digital systems (both hardware and software) are
notorious for their unpredictable and unreliable be-
havior:

Studies have shown that for every six new
large-scale software systems that are put into
operation, two others are cancelled. The
average software development project over-
shoots its schedule by half; larger projects
generally do worse. And three quarters of all
large systems are “operating failures” that ei-
ther do not function as intended or are not
used at all.

Despite 50 years of progress, the software in-
dustry remains years—perhaps decades—short
of the mature engineering discipline needed
to meet the demands of an information-age
society[6].

Lauren Ruth Wiener describes the software problem in
her book, Digital Woes: Why We Should Not Depend
Upon Software:

Software products—even programs of mod-
est size—are among the most complex arti-



facts that humans produce, and software de-
velopment projects are among our most com-
plex undertakings. They soak up however
much time or money, however many people
we throw at them.

The results are only modestly reliable. Even
after the most thorough and rigorous test-
ing some bugs remain. We can never test all
threads through the system with all possible
inputs[5].

The hardware industry also faces serious difficulties, as
evidenced by the recent design error in the Pentium
floating point unit. In response to an outcry over the
design flaw in the Pentium floating point unit, Intel’s
President, Andy Grove, wrote on the comp.sys.intel
Internet bulletin board:

After almost 25 years in the microprocessor
business, I have come to the conclusion that
no microprocessor is ever perfect; they just
come closer to perfection with each stepping.
In the life of a typical microprocessor, we go
thru [sic] half a dozen or more such step-

pings....

In a recent Washington Post article, Michael Schrage
wrote:

Pentium type problems will prove to be
the rule—rather than the isolated, aberrant
exceptions—as new generations of complex
hardware and software hit the market. More
insidious errors and harmful bugs are in-
evitable. That is the new reality[9].

For life critical systems, errors may mean disaster.
The potential for errors is high, because these systems
must not only perform their functions correctly, but
also must be able to recover from the effects of failing
components. Often the physical fault tolerance fea-
tures of these systems are more complex and suscep-
tible to design errors than any of the basic functions
of the system. John Rushby writes:

Organization of redundancy and fault-
tolerance for ultra-high reliability is a chal-
lenging problem: redundancy management
can account for half the software in a flight
control system and, if less than perfect can
itself become the primary source of system

failure [10].

In a comprehensive assessment of formal methods [11],
John Rushby discusses several notorious examples of
such failures. These include the following:

e The asynchronous operation of the AFTI-F16 and
sensor noise led each channel to declare the other
channels failed in flight test 44. The plane was
flown home on a single channel. Other potentially
disastrous bugs were detected in flight tests 15
and 36.

e The HIMAT crash landed without its landing gear
due to a design flaw. The problem was traced to
a timing change in the software that had survived
extensive testing.

e A bugin the YC-14 redundancy management was
found during flight test. The bug caused a large
mistracking between redundant channels.

e In flight tests of the X31, the control system went
into a reversionary mode four times in the first
nine flights, usually due to a disagreement be-
tween the two air data sources.

e The nationwide saturation of the AT&T switch-
ing systems on January 15, 1990 was caused by a
timing problem in a fault-recovery mechanism.

e The first Shuttle mission (STS-1) was scrubbed
because the fifth backup computer could not be
synchronized with the other four.

Three basic strategies are advocated for handling
design flaws in life critical systems:

1. Testing (Lots of it)

2. Design Diversity (i.e. software fault tolerance: N-
version programming, recovery blocks, etc.)

3. Fault Avoidance (i.e. formal specification
and verification, automatic program synthesis,
reusable modules)

The problem with life testing i1s that in order to
measure ultrareliability one must test for exorbitant
amounts of time. For example, to measure a 107°
probability of failure for a 1 hour mission one must
test for more than 10° hours (114,000 years).

The basic idea behind design diversity is to use
separate design and implementation teams to produce
multiple versions from the same specification. At run-
time, non-exact threshold voters are used to mask the
effect of a design error in one of the versions. The
hope is that the design flaws will manifest errors in-
dependently or nearly so. By assuming independence,
one can obtain ultrareliable-level estimates of system
reliability, even with failure rates for the individual
versions on the order of 107%/hour. Unfortunately,



the independence assumption has been rejected at the
99% confidence level in several experiments for low re-
liability software [12, 13].

Furthermore, the independence assumption cannot
be validated for high reliability software because of
the exorbitant test times required. If one cannot as-
sume independence then one must measure correla-
tions. This is infeasible as well; it requires as much
testing time as life-testing the system, because the cor-
relations must be in the ultrareliable region in order
for the system to be ultrareliable. Therefore, it is not
possible, within feasible amounts of testing time, to
establish that design diversity achieves ultrareliability.
Consequently, design diversity can create an “illusion”
of ultrareliability without actually providing it. For a
more detailed discussion, see [14].

We believe that formal methods offer the only intel-
lectually defensible method for handling design faults.
Since the often quoted 1 — 107° reliability is clearly
beyond the range of quantification, we have no choice
but to develop life critical systems in the most rig-
orous manner available to us, which 1s use of formal
methods.

1.2 What are Formal Methods

Engineering relies heavily on mathematical mod-
els and calculation to make judgments about designs.
This is in stark contrast to the way in which soft-
ware systems are designed—with ad hoc technique
and after-implementation testing. Formal methods
bring to software and hardware design the same advan-
tages that other engineering endeavors have exploited:
mathematical analysis based on models. Formal meth-
ods are used to specify and model the behavior of
a system and to formally verify that the system de-
sign and implementation satisfy functional and safety
properties. In principle, these techniques can produce
error-free design; however, this requires a complete
verification from the requirements down to the imple-
mentation, which is rarely done in practice.

Thus, formal methods are the applied mathematics
of computer systems engineering. They serve a sim-
ilar role in computer design as Computational Fluid
Dynamics (CFD) plays in aeronautical design, provid-
ing a means of calculating and hence predicting what
the behavior of a digital system will be prior to its
implementation.

The tremendous scientific potential of formal meth-
ods has been recognized by theoreticians for a long
time, but the formal techniques have remained the
province of a few academicians, with only a few ex-
ceptions such as the Transputer [15] and the IBM

CICS project [16]. The first five years of NASA Lang-
ley’s program have advanced the capabilities of formal
methods to the point where commercial exploitation
18 near.

There are many different types of formal methods
with various degrees of rigor. The following is a useful
(first-order) taxonomy of the degrees of rigor in formal
methods:

Level-1:  Formal specification of all or part of the
system.

Formal specification at two or more lev-
els of abstraction and paper and pencil
proofs that the detailed specification im-
plies the more abstract specification.
Formal proofs checked by a mechanical

theorem prover.

Level-2:

Level-3:

Level 1 represents the use of mathematical logic, or
a specification language that has a formal semantics,
to specify the system. This can be done at several
levels of abstraction. For example, one level might
enumerate the required abstract properties of the sys-
tem, while another level describes an implementation
that is algorithmic in style.

Level 2 formal methods go beyond Level 1 by de-
veloping pencil-and-paper proofs that the concrete lev-
els logically imply the abstract, property-oriented lev-
els. Level 3 is the most rigorous application of formal
methods. Here one uses a semi-automatic theorem
prover to make sure that all of the proofs are valid.
The Level 3 process of convincing a mechanical prover
is really a process of developing an argument for an
ultimate skeptic who must be shown every detail.

It is important to realize that formal methods are
not an all-or-nothing approach. The application of for-
mal methods to the most critical portions of a system
is a pragmatic and useful strategy. Although a com-
plete formal verification of a large complex system is
impractical at this time, a great increase in confidence
in the system can be obtained by the use of formal
methods at key locations in the system. For more in-
formation on the basic principles of formal methods,

see [17].

2 Goals of Our Program, Strategy, and
Research Team

The major goals of the NASA Langley research pro-
gram are to make formal methods practical for use on
life critical systems developed in the United States,
and to orchestrate the transfer of this technology to



industry through use of carefully designed demonstra-
tion projects. Our intention is to concentrate our re-
search efforts on the technically challenging areas of
digital flight-control systems design that are currently
beyond the state-of-the-art, while initiating demon-
stration projects in problem domains where current
formal methods are adequate. The challenge of the
demonstration projects should not be underestimated.
That which is feasible for experts that have developed
the tools and methods is often difficult for practition-
ers in the aerospace industry. There is often a long
“learning curve” associated with the tools; the tools
are not production-quality, and the tools have few or
no examples for specific problem domains. Therefore,
we are setting up cooperative efforts between industry
and the developers of the formal methods to facilitate
the technology transfer process.

This strategy leverages the huge investment of
ARPA and the National Security Agency in develop-
ment of tools and concentrates on the problems spe-
cific to the aerospace problem domain. NASA Lang-
ley has not sponsored the development of any general-
purpose theorem provers. However, the technology
transfer projects have lead to significant improvements
in the Prototype Verification System (PVS) theorem
prover[10] that SRI International (SRI) is develop-
ing. Several domain-specific tools are being sponsored:
(1) Tablewise, (2) VHDL-analysis tool, and (3) DRS.

These tools are discussed in later sections.

It 1s also important to realize that formal meth-
ods include a large class of mathematical techniques
and tools. Methods appropriate for one problem do-
main may be totally inappropriate for other prob-
lem domains. The following are some of the spe-
cific domains in which our program has concen-
trated: (1) architectural-level fault tolerance, (2)
clock-synchronization, (3) interactive consistency, (4)
design of hardware devices such as microprocessors,
memory management units, DMA controllers, (5)
asynchronous communication protocols, (6) design
and verification of application-specific integrated cir-
cuits (ASICS), (7) Space Shuttle software, (8) naviga-
tion software, (9) decision tables, (10) railroad signal-
ing systems.

We are also interested in applying formal methods
to many different portions of the life-cycle, such as
(1) requirements analysis, (2) high-level design, (3)
detailed design, and (4) implementation.

Often, there is a sizable effort associated with the
development of the background mathematical theories
needed for a particular problem domain. Although
such theories are reusable and in the long run can be-
come “cost-effective”, the initial costs can be a de-

terrent for industry. Therefore, one of the goals of
the NASA Langley program is to build a large body
of background theories needed for aerospace applica-
tions.

We also have been involved with standards activi-
ties in order to strengthen the United States commit-
ment to safety.

2.1 Technology Transfer

The key to successful technology transfer is building
a cooperative partnership with a customer. In order
for this partnership to work, NASA Langley must be-
come directly involved in specific problem domains of
the aerospace industry?. NASA must also effectively
communicate its basic research accomplishments in a
manner that reveals a significant potential benefit to
the aerospace community. Equally important i1s the
need for industry to make an investment to work to-
gether with NASA on joint projects to devise demon-
stration projects that are realistic and practical. The
ultimate goal of our technology transfer process is for
formal methods to become the “state-of-the-practice”
for U.S. industry development of ultrareliable digital
avionics systems. However, before we can develop new
tools and techniques suitable for adoption by industry,
we must work with the system developers in industry
to understand their needs. We must also overcome
the natural skepticism that industry has of any new
technology.

Our basic approach to technology transfer is as fol-
lows. The first step is to find an industry represen-
tative who has become interested in formal methods,
believes that there is a potential benefit of such meth-
ods, and is willing to work with us. The next step is to
fund our formal methods research team to apply for-
mal methods to an appropriate example application.
This process allows the industry representative to see
what formal methods are and what it has to offer,
and it allows us (the formal methods team) to learn
the design and implementation details of state-of-the-
practice components so we can better tailor our tools
and techniques to industry’s needs. If the demonstra-
tion project reveals a significant potential benefit, the
next stage of the technology transfer process is for the
industry representative to initiate an internal formal
methods program, and begin a true cooperative part-
nership with us.

Another important part of our technology trans-
fer strategy is working with the Federal Aviation Ad-

2To date, our efforts have concentrated on the aerospace in-
dustry, but we are actively seeking partners from other indus-
tries also.



ministration (FAA) to update certification technology
with respect to formal methods. If the certification
process can be redefined in a manner that awards
credit for the use of formal methods, a significant step
towards the transfer of this technology to the commer-
cial aircraft industry will have been accomplished.

Langley has also been sponsoring a series of work-
shops on formal methods. The first workshop, held
in August 1990, focused on building cooperation
and communication between U.S. formal methods
researchers[18]. The second, held in August 1992,
focused on education of the U.S. aerospace industry
about formal methods[19]. A third workshop will be
held in May 1995.

Another component of our technology transfer
strategy, is to use the NASA’s Small Business Inno-
vative Research (SBIR) program to assist small busi-
nesses in the development of commercially viable for-
mal methods tools and techniques. The first contracts
under the program began in early 1994.

Finally, to facilitate technology transfer, informa-
tion on NASA Langley’s formal methods research is
available on the Internet via either anonymous FTP
or World Wide Web. PostScript and DVI versions
of many research papers are available through anony-
mous FTP on machine deduction.larc.nasa.gov
(TP address: 128.155.18.16) in directory pub/fm.
This directory, and much more information, 1s also
available through World Wide Web, using the follow-

ing Uniform Resource Locator:

http://atb-www.larc.nasa.gov/Ifm-top.html
2.2 FAA/RTCA Involvement

As the federal agency responsible for certification
of civil air transports, the FAA shares our interest
in promising approaches to engineering and validat-
ing ultrareliable flight-control systems. Additionally,
because the FAA must approve any new methodolo-
gies for developing life critical digital systems for civil
air transports, their acceptance of formal methods is
a necessary precursor to its adoption by industry sys-
tem designers. We are working with Pete Saraceni of
the FAA Technical Center and Mike DeWalt, FAA Na-
tional Resource Specialist for Software, to insure that
our program is relevant to the certification process.
The FAA has co-sponsored some of our work. John
Rushby of SRI gave a tutorial on formal methods at
an FAA Software Advisory Team (SWAT) meeting at
their request. The SWAT team suggested that we in-
clude an assessment of formal methods in an ongoing
Guidance Control Software (GCS) experiment in our

branch; Odyssey Research Associates (ORA) devel-
oped a formal specification of the GCS application.

John Rushby has written a chapter for the FAA
Digital Systems Validation Handbook Volume IIT on
formal methods[20]. The handbook provides detailed
information about digital system design and valida-
tion and is used by the FAA certifiers. In preparation
for this chapter, Rushby produced a comprehensive
analysis of formal methods [11].

George Finelli, the former assistant Branch Head of
the System Validation Methods Branch (the Branch in
which the formal methods team worked before NASA
Langley’s reorganization in 1994) and a member of
the RTCA committee formed to develop DO-178B,
together with Ben Di Vito (VIGYAN Inc.), was in-
strumental in including formal methods as an alter-
nate means of compliance in the DO-178B standard.

Currently, members of the Langley staff are in-
volved in RTCA committees SC-180 (Airborne Elec-
tronic Hardware) and SC-182 (Minimal Operating
Performance Standard for an Airborne Computer Re-
source).

2.3 Team

The Langley formal methods program involves both
local researchers and industrial / academic researchers
working under contract to NASA Langley. Cur-
rently the local team consists of five civil servants
and one contractor (VIGYAN Inc.). The lead NASA
Langley formal methods researcher, Ricky W. But-
ler, may be contacted through electronic mail to
R.W.Butler@LaRC.NASA.GOV.

NASA Langley has recently awarded two five-year
task-assignment contracts specifically devoted to for-
mal methods (from the competitive NASA RFP 1-
132-DIC.1021). The selected contractors were SRI
International (SRI) and Odyssey Research Associates
(ORA). This was a follow-on contract from the previ-
ous competitive contract that had awarded three con-
tracts to SRI, ORA, and Computational Logic Inc.
(CLI).

3 Current Technology Development
and Transfer Projects

3.1 AAMP5/AAMP-FV Project

In 1993, NASA Langley initiated a joint project
involving Collins Commercial Avionics and SRI In-
ternational. The goal was to investigate the ap-
plication of formal techniques to a commercial mi-



croprocessor design, the Collins AAMP5 micropro-
cessor. The AAMP5S is the latest member of the
CAPS/AAMP family of microprocessors and is ob-
ject code compatible with the AAMP2 processor [21].
The CAPS/AAMP family of microprocessors has been
widely used by the commercial and military aerospace
industries. Some examples of use of earlier members
of the family include: (1) Boeing 747-400 Integrated
Display System (IDS), (2) Boeing 737-300 Electronic
Flight Instrumentation System (EFIS), (3) Boeing 777
Flight Control Backdrive, (4) Boeing 757,767 Autopi-
lot Flight Director System (AFDS), and (5) military
and commercial Global Positioning (GPS) Systems.
The first phase of the project consisted of the formal
specification of the AAMP5 instruction set and mi-
croarchitecture using SRI's PVS [22, 23] While for-
mally specifying the microprocessor, two design er-
rors were discovered in the microcode. These er-
rors were uncovered as a result of questions raised
by the formal methods researchers at Collins and SRI
while seeking to formally specify the behavior of the
microprocessor[24]. The Collins formal methods team
believes that this effort has prevented two significant
errors from going into the first fabrication of the mi-
CTOPTOCESSOT.

The second phase of the project consisted of for-
mally verifying the microcode of a representative sub-
set of the AAMP5S instructions. Collins seeded two
errors in the microcode provided to SRI in an attempt
to assess the effectiveness of formal verification. Both
of these errors (and suggested corrections) were dis-
covered while proving the microcode correct[24]. Tt
is noteworthy that both the level 2 and level 3 appli-
cations of formal methods were successful in finding
bugs. Based on the success of the AAMP) project, a
new effort has been initiated with Rockwell-Collins to
apply formal methods in the design level verification of
a microprocessor, currently designated as AAMP-FV.

3.2 Tablewise Project

Under NASA funding, Odyssey Research Asso-
ciates is working with Honeywell Air Transport Sys-
tems Division (Phoenix) to study the incorporation of
formal methods into the company’s software develop-
ment processes. Because Honeywell uses decision ta-
bles to specify the requirements and designs for much
of their software?, ORA is developing a prototype tool,
called Tablewise, to analyze the characteristics of deci-
sion tables. Tablewise uses a generalization of Binary

3 A decision table is a tabular format for defining the rules
that choose a particular action to perform based on the values
of certain parameters.

Decision Diagrams to determine if a particular table
is exclusive (for every combination of parameter val-
ues, at most one action can be chosen) and exhaustive
(for every combination of parameter values, at least
one action can be chosen). The tool is also capable
of automatically generating documentation and Ada
code from a decision table. We consider this a level
3 application of formal methods: although a general
purpose prover is not used, the analysis is mechanized
in a computer program.

In 1995, ORA will develop algorithms to handle
advanced analysis of decision tables. Two particular
areas of analysis that will be considered are testing of
additional properties of tables and techniques for ef-
ficiently handling partitioned tables. The Honeywell
personnel involved in the project hope that the con-
cepts developed in the Tablewise project can be in-
corporated into an industrial-strength tool that will
significantly reduce the effort required to develop new
software.

3.3 Union Switch and Signal

As part of a joint research agreement, NASA Lang-
ley formal methods researchers are collaborating with
engineers at Union Switch and Signal (US&S) to use
formal methods in the design of railway switching and
control applications. Railway switching control sys-
tems, like digital flight control systems, are safety crit-
ical systems. US&S is the leading U.S. supplier of rail-
way switching control systems. Their Advanced Tech-
nology Group, lead by Dr. Joseph Profeta, has applied
formal methods in past efforts and turned to NASA
for expertise in integrating these techniques into their
next generation products.

The initial project, started in 1993, was a cooper-
ative effort between NASA, US&S, and Odyssey Re-
search Associates. The result of this first year’s work
was a formal mathematical model of a railway switch-
ing network, defined in two levels. The top level of the
model provides the mechanisms for defining the basic
concepts: track, switches, trains and their positions
and control liners of a train (i.e. how far down the
track it has clearance to travel.) The second level is
a formalization of the standard scheme used in rail-
road control, the block model control system. A level
2 proof that the fixed block control system is “safe”
with respect to the top level model has been com-
pleted. Models of US&S proprietary control schemes
were also formulated.

The European formal methods community has ad-
dressed safety properties of certain components of rail-
road control systems, but the work there has typically



been at lower levels. The cooperative work with US&S
is unique in that a high level model of a railroad sys-
tem has been described and used to analyze the safety
of various control schemes.

The next phase of the collaborative effort will con-
centrate on formal modeling and analysis of the fault-
tolerant core of US&S’s next generation fail-stop con-
trol architecture.

3.4 Space Applications

A team spread across three NASA centers has
been formed to study the application and technology
transfer of formal methods to NASA space programs.
A consortium of researchers and practitioners from
LaRC, JSC, and JPL, together with support from Lo-
ral Space Information Systems, SRI International, and
ViIGYAN Inc., has been actively pursuing this objec-
tive since late 1992. The near term goal is to define
and carry out pilot projects using portions of existing
large-scale space programs. The long term goal 1s to
enable organizations such as Loral to reduce formal
methods to practice on programs of national impor-
tance.

The NASA Formal Methods Demonstration Project
for Space Applications focuses on the use of formal
methods for requirements analysis because the team
believes that formal methods are more practically ap-
plied to requirements analysis than to late-lifecycle de-
velopment phases [25]. A series of trial projects was
conducted and cost effectiveness data were collected.
The team’s efforts in 1993 were concentrated on a sin-
gle pilot project (discussed in a subsequent section),
while efforts beginning in 1994 have been more dif-
fuse.

NASA Langley’s primary role in 1994 included sup-
port for two Space Shuttle software change requests
(CR). One CR concerns the integration of new Global
Positioning System (GPS) functions while the other
concerns a new function to control contingency aborts
known as Three Engine Out (3 E/O). Both of these
tasks involve close cooperation among formal methods
researchers at NASA Langley, VIGYAN Inc., and SRI
International with requirements analysts from Loral
Space Information Systems.

The Space Shuttle is to be retrofitted with GPS re-
ceivers in anticipation of the TACAN navigation sys-
tem being phased out by the DoD. Additional naviga-
tion software will be incorporated to process the posi-
tion and velocity vectors generated by these receivers.
A decision was made to focus the trial formal meth-
ods task on just a few key areas because the CR itself
is very large and complex. A set of preliminary for-

mal specifications was developed for the new Shuttle
navigation principal functions known as GPS Receiver
State Processing and GPS Reference State Processing,
using the language of SRI’s Prototype Verification Sys-
tem (PVS). While writing the formal specifications, 43
minor discrepancies were detected in the CR and these
have been reported to Loral requirements analysts.

The Three Engine Out (3 E/O) Task is executed
each cycle during powered flight until either a contin-
gency abort maneuver is required or progress along
the powered flight trajectory is sufficient to preclude a
contingency abort even if three main engines fail. The
3 E/O task consists of two parts: 3 E/O Region Selec-
tion and 3 E/O Guidance. 3 E/O Region Selection is
responsible for selecting the type of external tank (ET)
separation maneuver and assigning the corresponding
region index. 3 E/O guidance monitors ascent param-
eters and determines if an abort maneuver 1s necessary.

We have developed and analyzed a formal model of
the series of sequential maneuvers that comprise the 3
E/O algorithm. To date, 20 potential issues have been
found, including undocumented assumptions, logical
errors, and inconsistent and imprecise terminology.
These findings are listed as potential issues pending
review by the 3 E/O requirements analyst.

The GPS and 3 E/O tasks have continued into
1995. We hope to get formal methods incorporated
as a requirements analysis technique for Space Shuttle
software. In addition, NASA Langley contributed to
a NASA guidebook under development by the inter-
center team. The first volume of the guidebook is
intended for managers of NASA projects who will be
using formal methods in requirements analysis activ-
ities. A second volume is planned that will be aimed
at practitioners. NASA will publish the first volume
early in 1995, with the second volume expected by
early 1996.

3.5 NASA Small Business Innovative Re-
search Program

In 1993, a formal methods subtopic was a part of
the NASA Small Business Innovative Research (SBIR)
solicitation. Two proposals were selected for 6-month
Phase I funding for 1994: VHDL Lightweight Tools, by
Odyssey Research Associates, and DRS — Derivation
Reasoning System, A Digital Design Derivation Sys-
tem for Hardware Synthesis, by Derivation Systems,
Inc. of Bloomington, Indiana. After the completion
of the Phase I efforts, both companies were selected
for continued Phase II funding. Contracts for these
efforts just recently began.



4 Past Efforts

This section describes previous work in each of the
following four focus areas: fault-tolerant systems, ver-
ification of software, verification of hardware devices,
and civil air transport requirements specification. This
section omits much of the early work described at

COMPASS 91 [26].
4.1 Fault-tolerant Systems

The goal of this focus area was to create a formal-
ized theory of fault tolerance including redundancy
management, clock synchronization, Byzantine agree-
ment, voting, etc. Much of the theory developed here
is applicable to future fault-tolerant systems designs.
A detailed design of a fault-tolerant reliable comput-
ing base, the Reliable Computing Platform (RCP), has
been developed and proven correct. It is hoped that
the RCP will serve as a demonstration of the formal
methods process and provide a foundation that can be
expanded and used for future aerospace applications.

The RCP architecture was designed in accordance
with a system design philosophy called “Design For
Validation” [27, 28]. The basic tenets of this design
philosophy are as follows:

1. A system is designed in such a manner that com-
plete and accurate models can be constructed to
estimate critical properties such as reliability and
performance. All parameters of the model that
cannot be deduced from the logical design must
be measured. All such parameters must be mea-
surable within a feasible amount of time.

2. The design process makes tradeoffs in favor of
designs that minimize the number of parameters
that must be measured in order to reduce the val-
idation cost. A design that has exceptional per-
formance properties yet requires the measurement
of hundreds of parameters (for example, by time-
consuming fault-injection experiments) would be
rejected over a less capable system that requires
minimal experimentation.

3. The system is designed and verified using rigor-
ous mathematical techniques. It is assumed that
the formal verification makes system failure due
to design faults negligible so the reliability model
does not include transitions representing design
erTors.

4. The reliability (or performance) model is shown
to be accurate with respect to the system imple-
mentation. This is accomplished analytically not
experimentally.

Thus, a major objective of this approach is to mini-
mize the amount of experimental testing required and
maximize the ability to reason mathematically about
correctness of the design. Although testing cannot be
eliminated from the design/validation process, the pri-
mary basis of belief in the dependability of the system
must come from analysis rather than from testing.

4.1.1 The Reliable Computing Platform

The Reliable Computing Platform dispatches control-
law application tasks and executes them on redun-
dant processors. The intended applications are safety
critical with reliability requirements on the order of
1 —107%. The reliable computing platform performs
the necessary fault-tolerant functions and provides an
interface to the network of sensors and actuators.

The RCP operating system provides the applica-
tions software developer with a reliable mechanism for
dispatching periodic tasks on a fault-tolerant comput-
ing base that appears to him as a single ultrareliable
processor. The top level of the hierarchy describes the
operating system as a function that sequentially in-
vokes application tasks. This view of the operating
system will be referred to as the wuniprocessor speci-
fication (US), which is formalized as a state transi-
tion system and forms the basis of the specification
for the RCP. Fault tolerance is achieved by voting re-
sults computed by the replicated processors operating
on the same inputs. Interactive consistency checks on
sensor inputs and voting of actuator outputs require
synchronization of the replicated processors. The sec-
ond level in the hierarchy (RS) describes the operating
system as a synchronous system where each replicated
processor executes the same application tasks. The
existence of a global time base, an interactive consis-
tency mechanism and a reliable voting mechanism are
assumed at this level.

Level 3 of the hierarchy (DS) breaks a frame into
four sequential phases. This allows a more explicit
modeling of interprocessor communication and the
time phasing of computation, communication, and
voting. At the fourth level (DA), the assumptions of
the synchronous model are discharged through use of
the interactive-convergence clock synchronization al-
gorithm [29].

In the LE model, a more detailed specification of
the activities on a local processor are presented. In
particular, three areas of activity are elaborated in
detail: (1) task dispatching and execution, (2) mini-
mal voting, and (3) interprocessor communication via
mailboxes. An intermediate model, DA _minv, that
simplified the construction of the LE model was used.



Of primary importance in the LE specification is the
use of a memory management unit by the local exec-
utive in order to prevent the overwriting of incorrect
memory locations while recovering from the effects of
a transient fault.

The top two levels of the RCP were originally for-
mally specified in standard mathematical notation and
connected via mathematical (i.e. level 2 formal meth-
ods) proof [30, 31, 32]. Under the assumption that
a majority of processors is working in each frame,
the proof establishes that the replicated system com-
putes the same results as a single processor system
not subject to failures. Sufficient conditions were de-
veloped that guarantee that the replicated system re-
covers from transient faults within a bounded amount
of time. SRI subsequently generalized the models and
constructed a mechanical proof in EHDM [33]. Next,
the local team developed the third and fourth level
models. The top two levels and the two new models
(i.e. DS and DA) were then specified in EHDM and all
of the proofs were done mechanically using the EHDM
5.2 prover [34, 35].

Both the DA_minv model and the LE model
were specified formally and have been verified using
the EHDM verification system[36]. All RCP specifi-
cations and proofs are available electronically via the
Internet using anonymous FTP or World Wide Web
(WWW) access. Anonymous FTP access is avail-
able through the host deduction.larc.nasa.gov us-
ing the path pub/fm/larc/RCP-specs. WWW ac-
cess to the FTP directory i1s provided through the
NASA Langley Formal Methods Program home page:
http://atb-www.larc.nasa.gov/fm-top.html

4.1.2 Clock Synchronization

The redundancy management strategies of virtually all
fault-tolerant systems depend on some form of voting,
which in turn depends on synchronization. Although
in many systems the clock synchronization function
has not been decoupled from the applications (e.g.
the redundant versions of the applications synchro-
nize by messages), research and experience have led
us to believe that solving the synchronization problem
independently from the applications design can pro-
vide significant simplification of the system [37, 38].
The operating system is built on top of this clock-
synchronization foundation. Of course, the correct-
ness of this foundation is essential. Thus, the clock
synchronization algorithm and its implementation are
prime candidates for formal methods. The verification
strategy shown in figure 1 1s being explored.

The top-level in the hierarchy is an abstract prop-

‘ Maximum Clock Skew Property ‘

‘ Synchronization Algorithm ‘

IDigital Circuit Implementationl

Figure 1: Hierarchical Verification of Clock Synchro-
nization

erty of the form:
V non-faulty p, ¢ : |Cp(t) — Co(t)] < &

where 6 is the maximum clock skew guaranteed by
the algorithm as long as a sufficient number of clocks
(and the processors they are attached to) are working.
The function Cjy(t) gives the value of clock p at real
time ¢t. The middle level in the hierarchy is a math-
ematical definition of the synchronization algorithm.
The bottom level is a detailed digital design of a cir-
cuit that implements the algorithm. The bottom level
is sufficiently detailed to make translation into silicon
straight forward.

The verification process involves two important
steps: (1) verification that the algorithm satisfies the
maximum skew property and (2) verification that the
digital circuitry correctly implements the algorithm.
The first step was completed by SRI International.
The first such proof was accomplished during the de-
sign and verification of SIFT [29]. The proof was done
by hand in the style of journal proofs. More recently
this proof step was mechanically verified using the
EHDM theorem prover[39, 40]. In addition, SRI me-
chanically verified Schneider’s clock synchronization
paradigm [41] using EHDM[42, 43]. A further general-
ization was found at NASA Langley [44]*. The design
of a digital circuit to distribute clock values in sup-
port of fault-tolerant synchronization was completed
by SRI and was partially verified.> CLI reproduced
the SRI verification of the interactive convergence al-
gorithm using the Boyer-Moore theorem prover [45].

NASA Langley researchers designed and imple-
mented a fault-tolerant clock synchronization circuit
capable of recovery from transient faults [46, 47, 44].
The top-level specification for the design is the EHDM

4The bounded delay assumption was shown to follow from
the other assumptions of the theory.

5Unlike the NASA circuit, the SRI intent is that the conver-
gence algorithm be implemented in software.



verification of Schneider’s paradigm. The circuit was
implemented with programmable logic devices (PLDs)
and FOXT fiber optic communications chips [48].
Using a combination of formal techniques, a veri-
fied clock synchronization circuit design has also been
developed[49]. The principal design tool was the Dig-
ital Design Derivation system (DDD) developed by
Indiana University[50]. Some design optimizations
that were not possible within DDD were verified using

PVS.

4.1.3 Byzantine Agreement Algorithms

Fault-tolerant systems, although internally redundant,
must deal with single-source information from the ex-
ternal world. For example, a flight control system is
built around the notion of feedback from physical sen-
sors such as accelerometers, position sensors, and pres-
sure sensors. Although these can be replicated (and
they usually are), the replicates do not produce iden-
tical results. To use bit-by-bit majority voting, all of
the computational replicates must operate on identical
input data. Thus, the sensor values (the complete re-
dundant suite) must be distributed to each processor
in a manner which guarantees that all working proces-
sors receive exactly the same value even in the presence
of some faulty processors. This is the classic Byzantine
Generals problem [51]; algorithms to solve the prob-
lem are called Byzantine agreement algorithms. CLI
investigated the formal verification and implementa-
tion of such algorithms. They formally verified the
original Marshall, Shostak, and Lamport version of
this algorithm using the Boyer Moore theorem prover
[52]. They also implemented this algorithm down to
the register-transfer level and demonstrated that it im-
plements the mathematical algorithm [53], and then
subsequently verified the design down to a hardware
description language HDL developed at CLI [54]. A
more efficient mechanical proof of the oral messages
algorithm was also developed by SRI[55].

ORA also investigated the formal verification of
Byzantine Generals algorithms. They focused on the
practical implementation of a Byzantine-resilient com-
munications mechanism between Mini-Cayuga micro-
processors [56, 57]. The Mini-Cayuga is a small but
formally verified microprocessor developed by ORA.
It is a research prototype and has not been fabri-
cated. The communications circuitry would serve as a
foundation for a fault-tolerant architecture. It was de-
signed assuming that the underlying processors were
synchronized (say by a clock synchronization circuit).
The issues involved with connecting the Byzantine
communications circuit with a clock synchronization

circuit and verifying the combination has not yet been
explored.

Thambidurai and Park [58] introduced a fault
model that classified faults into three categories:
asymmetric, symmetric, and benign. They further
suggested the need for and developed an algorithm
that had capabilities beyond that of the earlier Byzan-
tine generals algorithms. In particular, their algorithm
can mask the effects of a less severe class of faults, in
a more effective way. SRI has formally verified an im-
proved version of this algorithm [59, 60, 61]

The newly developed hybrid-fault theory was then
applied to the analysis of the Charles Stark Draper
Labs “Fault-Tolerant Processor” (FTP). A unique fea-
ture of this architecture is its use of “interstages” to
relay messages between processors. These are signifi-
cantly smaller than a processor and lead to an asym-
metric architecture that is far more efficient than the
traditional Byzantine agreement architectures. The
SRI work not only formalized the existing informal
analysis but extended it to cover a wider range of
faulty behavior[62].

Also SRI subsequently generalized their clock syn-
chronization work to encompass the hybrid fault

model [63].
4.2 Verification of Software

Our past software verification projects are de-
scribed in this section.

4.2.1 Formal Specification of Space Shuttle
Jet Select

NASA Langley worked with NASA Johnson Space
Center and the Jet Propulsion Laboratory (JPL) in
a study to explore the feasibility and utility of ap-
plying mechanically-supported formal methods to re-
quirements analysis for space applications. The team
worked jointly to develop a formal specification of the
Jet Select function of the NASA Space Shuttle, which
is a portion of the Shuttle’s Orbit Digital Auto-Pilot
(DAP). Although few proofs were produced for this
specification, 46 issues were identified and several mi-
nor errors were found in the requirements. A second
specification was produced for an abstract (i.e., high
level) representation of the Jet Select requirements.
This abstraction, along with the 24 proofs of key prop-
erties, was accomplished in under 2 work months, and
although i1t only uncovered 6 issues, several of these
issues were significant. Even this level 1 application of
formal methods was able to uncover hidden problems
in a highly critical and mature FSSR specification for
Shuttle.



This project impressed several key members of the
Shuttle software community that the benefits of for-
mal methods are concrete and economically realizable.
A very favorable reaction was received from the IBM
(now Loral) requirements analysts and senior JSC per-
sonnel (Bob Hinson, in particular). They commented
that they would like to work with us “to build a dif-
ferent paradigm where engineers write requirements
like this before passing the requirements to software
development.”

4.2.2 Honeywell Navigation Specification

A cooperative research effort was initiated in 1993 with
Honeywell Air Transport Systems Division (Phoenix)
to study the incorporation of formal methods into the
company’s software development processes. In the ini-
tial project in this effort, NASA Langley funded ORA
to 1dentify a component of the Boeing 777 system to
which formal specification techniques could be applied,
and to develop the formal specifications for that com-
ponent. ORA, in collaboration with personnel from
Langley and Honeywell, chose the navigation subsys-
tem as a suitable application.

Using documents supplied to them by Honeywell,
ORA developed a specification that addressed the fol-
lowing aspects of navigation:

e Dbasic mathematical concepts such as functions
over the reals, and physical units such as distance,
velocity, and acceleration

e definition of objects such as aircraft, radios, sen-
sors, navigation aids, and the navigation database

e definition of algorithms such as complementary
filter processing, navigation aid selection, naviga-
tion mode selection, and position determination

e relating the mathematical model to Ada by parti-
tioning the system in Ada package specifications,
and annotating individual Ada functions and pro-
cedures with formal specifications

The specification was done using ORA’s Penelope
tool.

4.2.3 Verification of Existing Ada Applica-
tions Software

Odyssey Research Associates completed two tasks ap-
plying their Ada verification tools to aerospace appli-
cations. The first task was to verify some utility rou-
tines obtained from the NASA Goddard Space Flight
Center and the NASA Lewis Research Center using
their Ada Verification Tool named Penelope [64]. This

task was accomplished in two steps: (1) formal spec-
ification of the routines and (2) formal verification of
the routines. Both steps uncovered errors [65]. The
second task was to formally specify the mode-control
panel logic of a Boeing 737 experimental aircraft sys-
tem using Larch (the specification language used by

Penelope) [66].
4.3 Verification of Hardware Devices

Our past research and technology transfer efforts in
the area of formal verification of hardware devices are
described below.

4.3.1 CSDL Scoreboard Hardware

A joint project between ORA and Charles Stark
Draper Laboratory (CSDL) was completed in 1993.
NASA Langley and the Army had been funding CSDL
to build fault-tolerant computer systems for over two
decades. During this project, CSDL became inter-
ested in the use of formal methods to increase confi-
dence in their designs. ORA was given the task of for-
mally specifying and verifying a key circuit (called the
scoreboard) of the Fault-Tolerant Parallel Processor
(FTPP) [67] in Clio [68]. The formal verification un-
covered previously unknown design errors. When the
scoreboard chip was fabricated, it worked without any
error manifestation. It was the first time that CSDL
produced a chip that worked “perfectly” on a first fab-
rication. CSDL credits VHDL-development tools and
formal methods for the success.

4.3.2 Asynchronous Communication

CLI developed a formal model of asynchronous com-
munication and demonstrated its utility by formally
verifying a widely used protocol for asynchronous com-
munication called the bi-phase mark protocol, also
known as “Bi-®-M,” “FM” or “single density” [69].
It is one of several protocols implemented by micro-
controllers such as the Intel 82530 and 1s used in the
Intel 82C501AD Ethernet Serial Interface.

4.3.3 Digital Design Derivation

Funded in part by a NASA Langley Graduate Stu-
dent Research Program fellowship, Bhaskar Bose de-
veloped the Digital Design Derivation system (DDD)
and used 1t to design a verified microprocessor. DDD
implements a formal design algebra that allows a de-
signer to transform a formal specification into a cor-
rect implementation[50]. Bose formally derived the
DDD-FM9001[70] microprocessor from Hunt’s top-
level specification of the FM9001 microprocessor[71].



5 Some Observations

Some general conclusions can be drawn from
the collective experience of the Langley-sponsored
projects. First, modern formal specification languages
such as PVS, which support higher order logic and a
rich type system, provide a means of writing specifi-
cations that can be read and understood by engineers.
Second, level 1 formal methods can reveal bugs not
found by traditional V&V techniques. Levels 2 and 3
can uncover additional errors and provide increased
confidence in the correctness of the system design.
Third, a sizable upfront cost is associated with trans-
ferring formal methods into a commercial company.
The two major components of this cost are: (1) Train-
ing the industrial experts to use the formal techniques,
especially to develop skill in verification, and (2) The
formal methods experts must work closely with the
industrial team to learn the problem domain in detail
in order to develop effective formal methods. In both
cases, the government can play a key sponsorship role.
It is critical that the government sponsor properly
match the industry interested in formal methods to
the appropriate formal methods team. Fourth, Find-
ing a person inside the company who is knowledgeable
of the problem domain, is a proponent of formal meth-
ods, and is an active participant in the project is es-
sential. Projects lacking such an individual have only
produced minimal transfer of formal methods technol-
ogy. Fifth, the formal methods researchers must be
willing to adapt their methods to the problem domain
rather than fight to change the existing methodologies
to conform to their needs. Sixth, without the signifi-
cant increases in hardware speed, level 3 formal meth-
ods would still be impractical. Efficient automation
of reasoning can greatly facilitate the useability of a
theorem prover.

6 Summary

The NASA Langley program in formal methods
has two major goals: (1) develop formal methods
technology suitable for a wide range of aerospace de-
signs and (2) facilitate technology transfer by initiat-
ing joint projects between formal methods researchers
and aerospace industries to apply the results of the
research to real systems. Starting in 1991, NASA
Langley initiated several aggressive projects designed
to move formal methods into productive use in the
aerospace community:

e Boeing PIU Project (1991)
e Charles Stark Draper FTPP Scoreboard (1991)

o Allied Signal Hybrid Fault Models (1992)
e Shuttle Tile Project (1992)

e Space Shuttle Jet Select Project (1993)°
e Honeywell Navigation (1993)

e Rockwell Collins AAMP5 (1993)

e Honeywell Tablewise (1994)

e Union Switch and Signal (1994)

e Rockwell Collins AAMP-FV (1995)

NASA’s program has advanced aerospace-related for-
mal methods in the United States to the point where
commercial exploitation of formal methods 1s near.
Our program has driven the development of PVS,
the most advanced general-purpose theorem prover
in the world [10], and the Odyssey Research Asso-
ciates VHDL-verification tool. Commercial industry
has been anxious to work with our team, although we
have not had sufficient resources to work with as many
as we would have liked. Nevertheless, we have helped
lay the necessary foundation for productive use of for-
mal methods in several companies.

Fundamental research has been performed in the
design and verification of a fault-tolerant reliable com-
puting platform that can support real-time control ap-
plications. Also much progress has been made in de-
veloping and demonstrating formal methods for criti-
cal subsystems of the RCP such as clock synchroniza-
tion, Byzantine agreement, and voting.
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